[1] 孙德强, 张俊仪, 时瑞浩. 车载信息娱乐系统发展及趋
势研究[J]. 汽车电器, 2024, (06): 39-41. SUN DQ,
ZHANG JY, SHI RH. Research on the development and
trends of in-vehicle infotainment systems. Automotive
Electronics, 2024, (06): 39-41. (in Chinese)
[2] 刘大鹏. 智能网联汽车信息安全挑战与思考[J]. 中国信
息安全, 2024, (02): 41-43. LIU DP. Challenges and
thoughts on information security in intelligent connected
vehicles. China Information Security, 2024, (02): 41-43. (in
Chinese)
[3] 丁志海. 车联网网络安全风险态势及对策分析[J]. 时代
汽车, 2023, (17): 194-196. DING ZH. Analysis of network
security risk situation and countermeasures in the Internet
of Vehicles. Times Automotive, 2023, (17): 194-196. (in
Chinese)
[4] 国家计算机网络应急技术处理协调中心(CNCERT/CC).
2020. 中国互联网网络安全报告[R]. 北京: 国家计算机
网络应急技术处理协调中心, 2020.[5] 赵占永. 基于动静态结合的恶意 URL 分析研判技术[J].
广播电视网络, 2022, 29(10): 71-74. ZHAO ZY. Malicious
URL analysis and judgment technology based on
dynamic-static combination. Broadcasting & Television
Network, 2022, 29(10): 71-74. (in Chinese)
[6] 江恺, 曹越, 周欢, 等. 车联网边缘智能:概念、架构、
问题、实施和展望[J]. 物联网学报, 2023, 7(01): 37-48.
JIANG K, CAO Y, ZHOU H, et al. Edge intelligence in the
Internet of Vehicles: Concepts, architecture, problems,
implementation, and prospects. Journal of Internet of
Things, 2023, 7(01): 37-48. (in Chinese)
[7] Aljabri M, Alhaidari F, Mohammad R M A, et al. An
assessment of lexical, network, and content-based features
for detecting malicious urls using machine learning and
deep learning models[J]. Computational Intelligence and
Neuroscience, 2022, 2022.
[8] Mehndiratta M, Jain N, Malhotra A, et al. Malicious URL:
Analysis and Detection using Machine Learning[C]//2023
10th International Conference on Computing for
Sustainable Global Development (INDIACom). IEEE,
2023: 1461-1465.
[9] Verma R, Das A. What's in a URL: Fast Feature Extraction
and Malicious URL Detection[C]//2017 3rd ACM
International Workshop on Security and Privacy Analytics
(IWSPA). ACM, 2017: 55-63.
[10] Sahoo D, Liu C, Hoi SC. Malicious URL detection using
machine learning: A survey[C]//arXiv preprint
arXiv:1701.07179. 2017.
[11] Khalife J, Nassar F T H M, Al Marri M H M K H. New
Heuristics Method for Malicious URLs Detection Using
Machine Learning[C]//2023 International Symposium on
Networks, Computers and Communications (ISNCC).
IEEE, 2023: 1-6.
[12] Chiramdasu R, Srivastava G, Bhattacharya S, et al.
Malicious url detection using logistic regression[C]//2021
IEEE International Conference on Omni-Layer Intelligent
Systems (COINS). IEEE, 2021: 1-6.
[13] 薛鹏飞, 沈毅, 胡淼, 等. 基于规则的域名 WHOIS 信息
抽取技术研究[J]. 信息对抗技术, 2023, 2(01): 66-77.
XUE PF, SHEN Y, HU M, et al. Research on rule-based
domain name WHOIS information extraction technology.
Information Countermeasure Technology, 2023, 2(01):
66-77. (in Chinese)
[14] Google. Google Safe Browsing[EB/OL].
(2006-01-01)[2023-11-10].
https://developers.g-oogle.cn/safe-browsingl/2020-10-15.
[15] Azeez N A, Misra S, Margaret I A, et al. Adopting
automated whitelist approach for detecting phishing
attacks[J]. Computers & Security, 2021, 108: 102328.
[16] Prakash P, Kumar M, Kompella R R, et al. Phishnet:
predictive blacklisting to detect phishing attacks[C]//2010
Proceedings IEEE INFOCOM. IEEE, 2010: 1-5.
[17] Akiyama M, Yagi T, Itoh M. Searching structural
neighborhood of malicious urls to improve
blacklisting[C]//2011 IEEE/IPSJ International Symposium
on Applications and the Internet. IEEE, 2011: 1-10.
[18] Rao R S, Pais A R, Anand P. A heuristic technique to detect
phishing websites using TWSVM classifier[J]. Neural
Computing and Applications, 2021, 33: 5733-5752.
[19] Moghimi M, Varjani A Y. New rule-based phishing
detection method[J]. Expert systems with applications,
2016, 53: 231-242.
[20] Zhang Y, Hong J I, Cranor L F. Cantina: a content-based
approach to detecting phishing web sites[C]//Proceedings
of the 16th international conference on World Wide Web.
2007: 639-648.
[21] da Silva C M R, Feitosa E L, Garcia V C. Heuristic-based
strategy for Phishing prediction: A survey of URL-based
approach[J]. Computers & Security, 2020, 88: 101613.
[22] Kumari K, Jaison F. Detection of URL Based Phishing
Websites Using Machine Learning in Django Framework[J].
Int J Res Appl Sci Eng Technol, 2022, 10(3).
[23] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks
for one shot learning[J]. Advances in neural information
processing systems, 2016, 29.
[24] Naru P, Chinthala S K R, Sekhar P G, et al. Detection of
Fake Websites using Machine Learning
Techniques[C]//2023 3rd International Conference on
Smart Data Intelligence (ICSMDI). IEEE, 2023: 477-482.
[25] Zhang Y, Fu X, Yang R, et al. DRSDetector: Detecting
Gambling Websites by Multi-level Feature Fusion[C]//2023
IEEE Symposium on Computers and Communications(ISCC). IEEE, 2023: 1441-1447.
[26] Yan X, Xu Y, Cui B, et al. Learning URL embedding for
malicious website detection[J]. IEEE Transactions on
Industrial Informatics, 2020, 16(10): 6673-6681.
[27] Alani M M, Tawfik H. Phishnot: A cloud-based
machine-learning approach to phishing url detection[J].
Computer Networks, 2022, 218: 109407.
|